fortran-lapack
Loading...
Searching...
No Matches
la_lapack::stevr Interface Reference

STEVR: computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. Whenever possible, STEVR calls DSTEMR to compute the eigenspectrum using Relatively Robust Representations. DSTEMR computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" L D L^T representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T, (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation, (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high relative accuracy by the dqds algorithm, (c) If there is a cluster of close eigenvalues, "choose" sigma_i close to the cluster, and go to step (a), (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, compute the corresponding eigenvector by forming a rank-revealing twisted factorization. The desired accuracy of the output can be specified by the input parameter ABSTOL. For more details, see "A new O(n^2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, Computer Science Division Technical Report No. UCB//CSD-97-971, UC Berkeley, May 1997. Note 1 : STEVR calls DSTEMR when the full spectrum is requested on machines which conform to the ieee-754 floating point standard. STEVR calls DSTEBZ and DSTEIN on non-ieee machines and when partial spectrum requests are made. Normal execution of DSTEMR may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the ieee standard default manner. More...

Public Member Functions

pure subroutine dstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
 
 la_dstevr
 
 la_qstevr
 
pure subroutine sstevr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
 
 la_sstevr
 

Detailed Description

STEVR: computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. Whenever possible, STEVR calls DSTEMR to compute the eigenspectrum using Relatively Robust Representations. DSTEMR computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" L D L^T representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T, (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation, (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high relative accuracy by the dqds algorithm, (c) If there is a cluster of close eigenvalues, "choose" sigma_i close to the cluster, and go to step (a), (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, compute the corresponding eigenvector by forming a rank-revealing twisted factorization. The desired accuracy of the output can be specified by the input parameter ABSTOL. For more details, see "A new O(n^2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, Computer Science Division Technical Report No. UCB//CSD-97-971, UC Berkeley, May 1997. Note 1 : STEVR calls DSTEMR when the full spectrum is requested on machines which conform to the ieee-754 floating point standard. STEVR calls DSTEBZ and DSTEIN on non-ieee machines and when partial spectrum requests are made. Normal execution of DSTEMR may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the ieee standard default manner.

Member Function/Subroutine Documentation

◆ dstevr()

pure subroutine la_lapack::stevr::dstevr ( character, intent(in)  jobz,
character, intent(in)  range,
integer(ilp), intent(in)  n,
real(dp), dimension(*), intent(inout)  d,
real(dp), dimension(*), intent(inout)  e,
real(dp), intent(in)  vl,
real(dp), intent(in)  vu,
integer(ilp), intent(in)  il,
integer(ilp), intent(in)  iu,
real(dp), intent(in)  abstol,
integer(ilp), intent(out)  m,
real(dp), dimension(*), intent(out)  w,
real(dp), dimension(ldz,*), intent(out)  z,
integer(ilp), intent(in)  ldz,
integer(ilp), dimension(*), intent(out)  isuppz,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)

◆ la_dstevr()

la_lapack::stevr::la_dstevr

◆ la_qstevr()

la_lapack::stevr::la_qstevr

◆ la_sstevr()

la_lapack::stevr::la_sstevr

◆ sstevr()

pure subroutine la_lapack::stevr::sstevr ( character, intent(in)  jobz,
character, intent(in)  range,
integer(ilp), intent(in)  n,
real(sp), dimension(*), intent(inout)  d,
real(sp), dimension(*), intent(inout)  e,
real(sp), intent(in)  vl,
real(sp), intent(in)  vu,
integer(ilp), intent(in)  il,
integer(ilp), intent(in)  iu,
real(sp), intent(in)  abstol,
integer(ilp), intent(out)  m,
real(sp), dimension(*), intent(out)  w,
real(sp), dimension(ldz,*), intent(out)  z,
integer(ilp), intent(in)  ldz,
integer(ilp), dimension(*), intent(out)  isuppz,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)

The documentation for this interface was generated from the following file: