fortran-lapack
Loading...
Searching...
No Matches
la_svd::svd Interface Reference

Singular value decomposition. More...

Public Member Functions

subroutine la_svd_s (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 
subroutine la_svd_d (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 
subroutine la_svd_q (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 
subroutine la_svd_c (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 
subroutine la_svd_z (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 
subroutine la_svd_w (a, s, u, vt, overwrite_a, full_matrices, err)
 SVD of matrix A = U S V^T, returning S and optionally U and V^T.
 

Detailed Description

Singular value decomposition.

Singular values

Member Function/Subroutine Documentation

◆ la_svd_c()

subroutine la_svd::svd::la_svd_c ( complex(sp), dimension(:,:), intent(inout), target  a,
real(sp), dimension(:), intent(out)  s,
complex(sp), dimension(:,:), intent(out), optional, target  u,
complex(sp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

◆ la_svd_d()

subroutine la_svd::svd::la_svd_d ( real(dp), dimension(:,:), intent(inout), target  a,
real(dp), dimension(:), intent(out)  s,
real(dp), dimension(:,:), intent(out), optional, target  u,
real(dp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

◆ la_svd_q()

subroutine la_svd::svd::la_svd_q ( real(qp), dimension(:,:), intent(inout), target  a,
real(qp), dimension(:), intent(out)  s,
real(qp), dimension(:,:), intent(out), optional, target  u,
real(qp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

◆ la_svd_s()

subroutine la_svd::svd::la_svd_s ( real(sp), dimension(:,:), intent(inout), target  a,
real(sp), dimension(:), intent(out)  s,
real(sp), dimension(:,:), intent(out), optional, target  u,
real(sp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

◆ la_svd_w()

subroutine la_svd::svd::la_svd_w ( complex(qp), dimension(:,:), intent(inout), target  a,
real(qp), dimension(:), intent(out)  s,
complex(qp), dimension(:,:), intent(out), optional, target  u,
complex(qp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

◆ la_svd_z()

subroutine la_svd::svd::la_svd_z ( complex(dp), dimension(:,:), intent(inout), target  a,
real(dp), dimension(:), intent(out)  s,
complex(dp), dimension(:,:), intent(out), optional, target  u,
complex(dp), dimension(:,:), intent(out), optional, target  vt,
logical(lk), intent(in), optional  overwrite_a,
logical(lk), intent(in), optional  full_matrices,
type(la_state), intent(out), optional  err 
)

SVD of matrix A = U S V^T, returning S and optionally U and V^T.

Parameters
[in,out]aInput matrix A[m,n]
[out]sArray of singular values
[out]uThe columns of U contain the eigenvectors of A A^T
[out]vtThe rows of V^T contain the eigenvectors of A^T A
[in]overwrite_a[optional] Can A data be overwritten and destroyed?
[in]full_matrices[optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)
[out]err[optional] state return flag. On error if not requested, the code will stop

The documentation for this interface was generated from the following file: