fortran-lapack
Loading...
Searching...
No Matches
la_lapack::gelsy Interface Reference

GELSY: computes the minimum-norm solution to a complex linear least squares problem: minimize || A * X - B || using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting: A * P = Q * [ R11 R12 ] [ 0 R22 ] with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by unitary transformations from the right, arriving at the complete orthogonal factorization: A * P = Q * [ T11 0 ] * Z [ 0 0 ] The minimum-norm solution is then X = P * Z**H [ inv(T11)*Q1**H*B ] [ 0 ] where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences: o The permutation of matrix B (the right hand side) is faster and more simple. o The call to the subroutine xGEQPF has been substituted by the the call to the subroutine xGEQP3. This subroutine is a Blas-3 version of the QR factorization with column pivoting. o Matrix B (the right hand side) is updated with Blas-3. More...

Public Member Functions

subroutine cgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)
 
 la_cgelsy
 
subroutine dgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
 
 la_dgelsy
 
 la_qgelsy
 
subroutine sgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
 
 la_sgelsy
 
 la_wgelsy
 
subroutine zgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)
 
 la_zgelsy
 

Detailed Description

GELSY: computes the minimum-norm solution to a complex linear least squares problem: minimize || A * X - B || using a complete orthogonal factorization of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The routine first computes a QR factorization with column pivoting: A * P = Q * [ R11 R12 ] [ 0 R22 ] with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Then, R22 is considered to be negligible, and R12 is annihilated by unitary transformations from the right, arriving at the complete orthogonal factorization: A * P = Q * [ T11 0 ] * Z [ 0 0 ] The minimum-norm solution is then X = P * Z**H [ inv(T11)*Q1**H*B ] [ 0 ] where Q1 consists of the first RANK columns of Q. This routine is basically identical to the original xGELSX except three differences: o The permutation of matrix B (the right hand side) is faster and more simple. o The call to the subroutine xGEQPF has been substituted by the the call to the subroutine xGEQP3. This subroutine is a Blas-3 version of the QR factorization with column pivoting. o Matrix B (the right hand side) is updated with Blas-3.

Member Function/Subroutine Documentation

◆ cgelsy()

subroutine la_lapack::gelsy::cgelsy ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  nrhs,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), dimension(*), intent(inout)  jpvt,
real(sp), intent(in)  rcond,
integer(ilp), intent(out)  rank,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(sp), dimension(*), intent(out)  rwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ dgelsy()

subroutine la_lapack::gelsy::dgelsy ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  nrhs,
real(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), dimension(*), intent(inout)  jpvt,
real(dp), intent(in)  rcond,
integer(ilp), intent(out)  rank,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_cgelsy()

la_lapack::gelsy::la_cgelsy

◆ la_dgelsy()

la_lapack::gelsy::la_dgelsy

◆ la_qgelsy()

la_lapack::gelsy::la_qgelsy

◆ la_sgelsy()

la_lapack::gelsy::la_sgelsy

◆ la_wgelsy()

la_lapack::gelsy::la_wgelsy

◆ la_zgelsy()

la_lapack::gelsy::la_zgelsy

◆ sgelsy()

subroutine la_lapack::gelsy::sgelsy ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  nrhs,
real(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), dimension(*), intent(inout)  jpvt,
real(sp), intent(in)  rcond,
integer(ilp), intent(out)  rank,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ zgelsy()

subroutine la_lapack::gelsy::zgelsy ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  nrhs,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), dimension(*), intent(inout)  jpvt,
real(dp), intent(in)  rcond,
integer(ilp), intent(out)  rank,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(dp), dimension(*), intent(out)  rwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: