Using the divide and conquer method, LAED0: computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.
More...
|
pure subroutine | claed0 (qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info) |
|
| la_claed0 |
|
pure subroutine | dlaed0 (icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info) |
|
| la_dlaed0 |
|
| la_qlaed0 |
|
pure subroutine | slaed0 (icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info) |
|
| la_slaed0 |
|
| la_wlaed0 |
|
pure subroutine | zlaed0 (qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info) |
|
| la_zlaed0 |
|
Using the divide and conquer method, LAED0: computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.
◆ claed0()
pure subroutine la_lapack::laed0::claed0 |
( |
integer(ilp), intent(in) | qsiz, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(sp), dimension(*), intent(inout) | d, |
|
|
real(sp), dimension(*), intent(inout) | e, |
|
|
complex(sp), dimension(ldq,*), intent(inout) | q, |
|
|
integer(ilp), intent(in) | ldq, |
|
|
complex(sp), dimension(ldqs,*), intent(out) | qstore, |
|
|
integer(ilp), intent(in) | ldqs, |
|
|
real(sp), dimension(*), intent(out) | rwork, |
|
|
integer(ilp), dimension(*), intent(out) | iwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ dlaed0()
pure subroutine la_lapack::laed0::dlaed0 |
( |
integer(ilp), intent(in) | icompq, |
|
|
integer(ilp), intent(in) | qsiz, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(dp), dimension(*), intent(inout) | d, |
|
|
real(dp), dimension(*), intent(inout) | e, |
|
|
real(dp), dimension(ldq,*), intent(inout) | q, |
|
|
integer(ilp), intent(in) | ldq, |
|
|
real(dp), dimension(ldqs,*), intent(out) | qstore, |
|
|
integer(ilp), intent(in) | ldqs, |
|
|
real(dp), dimension(*), intent(out) | work, |
|
|
integer(ilp), dimension(*), intent(out) | iwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ la_claed0()
la_lapack::laed0::la_claed0 |
◆ la_dlaed0()
la_lapack::laed0::la_dlaed0 |
◆ la_qlaed0()
la_lapack::laed0::la_qlaed0 |
◆ la_slaed0()
la_lapack::laed0::la_slaed0 |
◆ la_wlaed0()
la_lapack::laed0::la_wlaed0 |
◆ la_zlaed0()
la_lapack::laed0::la_zlaed0 |
◆ slaed0()
pure subroutine la_lapack::laed0::slaed0 |
( |
integer(ilp), intent(in) | icompq, |
|
|
integer(ilp), intent(in) | qsiz, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(sp), dimension(*), intent(inout) | d, |
|
|
real(sp), dimension(*), intent(inout) | e, |
|
|
real(sp), dimension(ldq,*), intent(inout) | q, |
|
|
integer(ilp), intent(in) | ldq, |
|
|
real(sp), dimension(ldqs,*), intent(out) | qstore, |
|
|
integer(ilp), intent(in) | ldqs, |
|
|
real(sp), dimension(*), intent(out) | work, |
|
|
integer(ilp), dimension(*), intent(out) | iwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ zlaed0()
pure subroutine la_lapack::laed0::zlaed0 |
( |
integer(ilp), intent(in) | qsiz, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(dp), dimension(*), intent(inout) | d, |
|
|
real(dp), dimension(*), intent(inout) | e, |
|
|
complex(dp), dimension(ldq,*), intent(inout) | q, |
|
|
integer(ilp), intent(in) | ldq, |
|
|
complex(dp), dimension(ldqs,*), intent(out) | qstore, |
|
|
integer(ilp), intent(in) | ldqs, |
|
|
real(dp), dimension(*), intent(out) | rwork, |
|
|
integer(ilp), dimension(*), intent(out) | iwork, |
|
|
integer(ilp), intent(out) | info ) |
The documentation for this interface was generated from the following file: