fortran-lapack
Loading...
Searching...
No Matches
la_lapack::gglse Interface Reference

GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q. More...

Public Member Functions

pure subroutine cgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
 
 la_cgglse
 
pure subroutine dgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
 
 la_dgglse
 
 la_qgglse
 
pure subroutine sgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
 
 la_sgglse
 
 la_wgglse
 
pure subroutine zgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
 
 la_zgglse
 

Detailed Description

GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q.

Member Function/Subroutine Documentation

◆ cgglse()

pure subroutine la_lapack::gglse::cgglse ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  p,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
complex(sp), dimension(*), intent(inout)  c,
complex(sp), dimension(*), intent(inout)  d,
complex(sp), dimension(*), intent(out)  x,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ dgglse()

pure subroutine la_lapack::gglse::dgglse ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  p,
real(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
real(dp), dimension(*), intent(inout)  c,
real(dp), dimension(*), intent(inout)  d,
real(dp), dimension(*), intent(out)  x,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_cgglse()

la_lapack::gglse::la_cgglse

◆ la_dgglse()

la_lapack::gglse::la_dgglse

◆ la_qgglse()

la_lapack::gglse::la_qgglse

◆ la_sgglse()

la_lapack::gglse::la_sgglse

◆ la_wgglse()

la_lapack::gglse::la_wgglse

◆ la_zgglse()

la_lapack::gglse::la_zgglse

◆ sgglse()

pure subroutine la_lapack::gglse::sgglse ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  p,
real(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
real(sp), dimension(*), intent(inout)  c,
real(sp), dimension(*), intent(inout)  d,
real(sp), dimension(*), intent(out)  x,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ zgglse()

pure subroutine la_lapack::gglse::zgglse ( integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  p,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
complex(dp), dimension(*), intent(inout)  c,
complex(dp), dimension(*), intent(inout)  d,
complex(dp), dimension(*), intent(out)  x,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: