GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q.
More...
|
| pure subroutine | cgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
| |
| | la_cgglse |
| |
| pure subroutine | dgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
| |
| | la_dgglse |
| |
| | la_qgglse |
| |
| pure subroutine | sgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
| |
| | la_sgglse |
| |
| | la_wgglse |
| |
| pure subroutine | zgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
| |
| | la_zgglse |
| |
GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q.
◆ cgglse()
| pure subroutine la_lapack::gglse::cgglse |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | p, |
|
|
complex(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
complex(sp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
complex(sp), dimension(*), intent(inout) | c, |
|
|
complex(sp), dimension(*), intent(inout) | d, |
|
|
complex(sp), dimension(*), intent(out) | x, |
|
|
complex(sp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ dgglse()
| pure subroutine la_lapack::gglse::dgglse |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | p, |
|
|
real(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(dp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
real(dp), dimension(*), intent(inout) | c, |
|
|
real(dp), dimension(*), intent(inout) | d, |
|
|
real(dp), dimension(*), intent(out) | x, |
|
|
real(dp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ la_cgglse()
| la_lapack::gglse::la_cgglse |
◆ la_dgglse()
| la_lapack::gglse::la_dgglse |
◆ la_qgglse()
| la_lapack::gglse::la_qgglse |
◆ la_sgglse()
| la_lapack::gglse::la_sgglse |
◆ la_wgglse()
| la_lapack::gglse::la_wgglse |
◆ la_zgglse()
| la_lapack::gglse::la_zgglse |
◆ sgglse()
| pure subroutine la_lapack::gglse::sgglse |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | p, |
|
|
real(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(sp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
real(sp), dimension(*), intent(inout) | c, |
|
|
real(sp), dimension(*), intent(inout) | d, |
|
|
real(sp), dimension(*), intent(out) | x, |
|
|
real(sp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ zgglse()
| pure subroutine la_lapack::gglse::zgglse |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | p, |
|
|
complex(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
complex(dp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
complex(dp), dimension(*), intent(inout) | c, |
|
|
complex(dp), dimension(*), intent(inout) | d, |
|
|
complex(dp), dimension(*), intent(out) | x, |
|
|
complex(dp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
The documentation for this interface was generated from the following file: