GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q.
More...
|
pure subroutine | cgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
|
| la_cgglse |
|
pure subroutine | dgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
|
| la_dgglse |
|
| la_qgglse |
|
pure subroutine | sgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
|
| la_sgglse |
|
| la_wgglse |
|
pure subroutine | zgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info) |
|
| la_zgglse |
|
GGLSE: solves the linear equality-constrained least squares (LSE) problem: minimize || c - A*x ||_2 subject to B*x = d where A is an M-by-N matrix, B is a P-by-N matrix, c is a given M-vector, and d is a given P-vector. It is assumed that P <= N <= M+P, and rank(B) = P and rank( (A) ) = N. ( (B) ) These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized RQ factorization of the matrices (B, A) given by B = (0 R)*Q, A = Z*T*Q.
◆ cgglse()
pure subroutine la_lapack::gglse::cgglse |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
p, |
|
|
complex(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(sp), dimension(ldb,*), intent(inout) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
complex(sp), dimension(*), intent(inout) |
c, |
|
|
complex(sp), dimension(*), intent(inout) |
d, |
|
|
complex(sp), dimension(*), intent(out) |
x, |
|
|
complex(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ dgglse()
pure subroutine la_lapack::gglse::dgglse |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
p, |
|
|
real(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(dp), dimension(ldb,*), intent(inout) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
real(dp), dimension(*), intent(inout) |
c, |
|
|
real(dp), dimension(*), intent(inout) |
d, |
|
|
real(dp), dimension(*), intent(out) |
x, |
|
|
real(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ la_cgglse()
la_lapack::gglse::la_cgglse |
◆ la_dgglse()
la_lapack::gglse::la_dgglse |
◆ la_qgglse()
la_lapack::gglse::la_qgglse |
◆ la_sgglse()
la_lapack::gglse::la_sgglse |
◆ la_wgglse()
la_lapack::gglse::la_wgglse |
◆ la_zgglse()
la_lapack::gglse::la_zgglse |
◆ sgglse()
pure subroutine la_lapack::gglse::sgglse |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
p, |
|
|
real(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(sp), dimension(ldb,*), intent(inout) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
real(sp), dimension(*), intent(inout) |
c, |
|
|
real(sp), dimension(*), intent(inout) |
d, |
|
|
real(sp), dimension(*), intent(out) |
x, |
|
|
real(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ zgglse()
pure subroutine la_lapack::gglse::zgglse |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
p, |
|
|
complex(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(dp), dimension(ldb,*), intent(inout) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
complex(dp), dimension(*), intent(inout) |
c, |
|
|
complex(dp), dimension(*), intent(inout) |
d, |
|
|
complex(dp), dimension(*), intent(out) |
x, |
|
|
complex(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
The documentation for this interface was generated from the following file: