fortran-lapack
Loading...
Searching...
No Matches
la_lapack::gesvdq Interface Reference

GESVDQ: computes the singular value decomposition (SVD) of a complex M-by-N matrix A, where M >= N. The SVD of A is written as [++] [xx] [x0] [xx] A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx] [++] [xx] where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A. The columns of U and V are the left and the right singular vectors of A, respectively. More...

Public Member Functions

subroutine cgesvdq (joba, jobp, jobr, jobu, jobv, m, n, a, lda, s, u, ldu, v, ldv, numrank, iwork, liwork, cwork, lcwork, rwork, lrwork, info)
 
 la_cgesvdq
 
subroutine dgesvdq (joba, jobp, jobr, jobu, jobv, m, n, a, lda, s, u, ldu, v, ldv, numrank, iwork, liwork, work, lwork, rwork, lrwork, info)
 
 la_dgesvdq
 
 la_qgesvdq
 
subroutine sgesvdq (joba, jobp, jobr, jobu, jobv, m, n, a, lda, s, u, ldu, v, ldv, numrank, iwork, liwork, work, lwork, rwork, lrwork, info)
 
 la_sgesvdq
 
 la_wgesvdq
 
subroutine zgesvdq (joba, jobp, jobr, jobu, jobv, m, n, a, lda, s, u, ldu, v, ldv, numrank, iwork, liwork, cwork, lcwork, rwork, lrwork, info)
 
 la_zgesvdq
 

Detailed Description

GESVDQ: computes the singular value decomposition (SVD) of a complex M-by-N matrix A, where M >= N. The SVD of A is written as [++] [xx] [x0] [xx] A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx] [++] [xx] where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A. The columns of U and V are the left and the right singular vectors of A, respectively.

Member Function/Subroutine Documentation

◆ cgesvdq()

subroutine la_lapack::gesvdq::cgesvdq ( character, intent(in)  joba,
character, intent(in)  jobp,
character, intent(in)  jobr,
character, intent(in)  jobu,
character, intent(in)  jobv,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(sp), dimension(*), intent(out)  s,
complex(sp), dimension(ldu,*), intent(out)  u,
integer(ilp), intent(in)  ldu,
complex(sp), dimension(ldv,*), intent(out)  v,
integer(ilp), intent(in)  ldv,
integer(ilp), intent(out)  numrank,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
complex(sp), dimension(*), intent(out)  cwork,
integer(ilp), intent(inout)  lcwork,
real(sp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ dgesvdq()

subroutine la_lapack::gesvdq::dgesvdq ( character, intent(in)  joba,
character, intent(in)  jobp,
character, intent(in)  jobr,
character, intent(in)  jobu,
character, intent(in)  jobv,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(dp), dimension(*), intent(out)  s,
real(dp), dimension(ldu,*), intent(out)  u,
integer(ilp), intent(in)  ldu,
real(dp), dimension(ldv,*), intent(out)  v,
integer(ilp), intent(in)  ldv,
integer(ilp), intent(out)  numrank,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(inout)  lwork,
real(dp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_cgesvdq()

la_lapack::gesvdq::la_cgesvdq

◆ la_dgesvdq()

la_lapack::gesvdq::la_dgesvdq

◆ la_qgesvdq()

la_lapack::gesvdq::la_qgesvdq

◆ la_sgesvdq()

la_lapack::gesvdq::la_sgesvdq

◆ la_wgesvdq()

la_lapack::gesvdq::la_wgesvdq

◆ la_zgesvdq()

la_lapack::gesvdq::la_zgesvdq

◆ sgesvdq()

subroutine la_lapack::gesvdq::sgesvdq ( character, intent(in)  joba,
character, intent(in)  jobp,
character, intent(in)  jobr,
character, intent(in)  jobu,
character, intent(in)  jobv,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(sp), dimension(*), intent(out)  s,
real(sp), dimension(ldu,*), intent(out)  u,
integer(ilp), intent(in)  ldu,
real(sp), dimension(ldv,*), intent(out)  v,
integer(ilp), intent(in)  ldv,
integer(ilp), intent(out)  numrank,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(inout)  lwork,
real(sp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ zgesvdq()

subroutine la_lapack::gesvdq::zgesvdq ( character, intent(in)  joba,
character, intent(in)  jobp,
character, intent(in)  jobr,
character, intent(in)  jobu,
character, intent(in)  jobv,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(dp), dimension(*), intent(out)  s,
complex(dp), dimension(ldu,*), intent(out)  u,
integer(ilp), intent(in)  ldu,
complex(dp), dimension(ldv,*), intent(out)  v,
integer(ilp), intent(in)  ldv,
integer(ilp), intent(out)  numrank,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
complex(dp), dimension(*), intent(out)  cwork,
integer(ilp), intent(inout)  lcwork,
real(dp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: