LATSQR: computes a blocked Tall-Skinny QR factorization of a complex M-by-N matrix A for M >= N: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix, stored on exit in an implicit form in the elements below the diagonal of the array A and in the elements of the array T; R is an upper-triangular N-by-N matrix, stored on exit in the elements on and above the diagonal of the array A. 0 is a (M-N)-by-N zero matrix, and is not stored.
More...
|
pure subroutine | clatsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_clatsqr |
|
pure subroutine | dlatsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_dlatsqr |
|
| la_qlatsqr |
|
pure subroutine | slatsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_slatsqr |
|
| la_wlatsqr |
|
pure subroutine | zlatsqr (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_zlatsqr |
|
LATSQR: computes a blocked Tall-Skinny QR factorization of a complex M-by-N matrix A for M >= N: A = Q * ( R ), ( 0 ) where: Q is a M-by-M orthogonal matrix, stored on exit in an implicit form in the elements below the diagonal of the array A and in the elements of the array T; R is an upper-triangular N-by-N matrix, stored on exit in the elements on and above the diagonal of the array A. 0 is a (M-N)-by-N zero matrix, and is not stored.
◆ clatsqr()
pure subroutine la_lapack::latsqr::clatsqr |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
complex(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(sp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
complex(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ dlatsqr()
pure subroutine la_lapack::latsqr::dlatsqr |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
real(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(dp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
real(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ la_clatsqr()
la_lapack::latsqr::la_clatsqr |
◆ la_dlatsqr()
la_lapack::latsqr::la_dlatsqr |
◆ la_qlatsqr()
la_lapack::latsqr::la_qlatsqr |
◆ la_slatsqr()
la_lapack::latsqr::la_slatsqr |
◆ la_wlatsqr()
la_lapack::latsqr::la_wlatsqr |
◆ la_zlatsqr()
la_lapack::latsqr::la_zlatsqr |
◆ slatsqr()
pure subroutine la_lapack::latsqr::slatsqr |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
real(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(sp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
real(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ zlatsqr()
pure subroutine la_lapack::latsqr::zlatsqr |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
complex(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(dp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
complex(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
The documentation for this interface was generated from the following file: