fortran-lapack
Loading...
Searching...
No Matches
la_lapack::lar1v Interface Reference

LAR1V: computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, r corresponds to the index where the eigenvector is largest in magnitude. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform. More...

Public Member Functions

pure subroutine clar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
 
 la_clar1v
 
pure subroutine dlar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
 
 la_dlar1v
 
 la_qlar1v
 
pure subroutine slar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
 
 la_slar1v
 
 la_wlar1v
 
pure subroutine zlar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
 
 la_zlar1v
 

Detailed Description

LAR1V: computes the (scaled) r-th column of the inverse of the sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L**T - sigma I. When sigma is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, r corresponds to the index where the eigenvector is largest in magnitude. The following steps accomplish this computation : (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, (c) Computation of the diagonal elements of the inverse of L D L**T - sigma I by combining the above transforms, and choosing r as the index where the diagonal of the inverse is (one of the) largest in magnitude. (d) Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the the stationary and the bottom part of the progressive transform.

Member Function/Subroutine Documentation

◆ clar1v()

pure subroutine la_lapack::lar1v::clar1v ( integer(ilp), intent(in)  n,
integer(ilp), intent(in)  b1,
integer(ilp), intent(in)  bn,
real(sp), intent(in)  lambda,
real(sp), dimension(*), intent(in)  d,
real(sp), dimension(*), intent(in)  l,
real(sp), dimension(*), intent(in)  ld,
real(sp), dimension(*), intent(in)  lld,
real(sp), intent(in)  pivmin,
real(sp), intent(in)  gaptol,
complex(sp), dimension(*), intent(inout)  z,
logical(lk), intent(in)  wantnc,
integer(ilp), intent(out)  negcnt,
real(sp), intent(out)  ztz,
real(sp), intent(out)  mingma,
integer(ilp), intent(inout)  r,
integer(ilp), dimension(*), intent(out)  isuppz,
real(sp), intent(out)  nrminv,
real(sp), intent(out)  resid,
real(sp), intent(out)  rqcorr,
real(sp), dimension(*), intent(out)  work 
)

◆ dlar1v()

pure subroutine la_lapack::lar1v::dlar1v ( integer(ilp), intent(in)  n,
integer(ilp), intent(in)  b1,
integer(ilp), intent(in)  bn,
real(dp), intent(in)  lambda,
real(dp), dimension(*), intent(in)  d,
real(dp), dimension(*), intent(in)  l,
real(dp), dimension(*), intent(in)  ld,
real(dp), dimension(*), intent(in)  lld,
real(dp), intent(in)  pivmin,
real(dp), intent(in)  gaptol,
real(dp), dimension(*), intent(inout)  z,
logical(lk), intent(in)  wantnc,
integer(ilp), intent(out)  negcnt,
real(dp), intent(out)  ztz,
real(dp), intent(out)  mingma,
integer(ilp), intent(inout)  r,
integer(ilp), dimension(*), intent(out)  isuppz,
real(dp), intent(out)  nrminv,
real(dp), intent(out)  resid,
real(dp), intent(out)  rqcorr,
real(dp), dimension(*), intent(out)  work 
)

◆ la_clar1v()

la_lapack::lar1v::la_clar1v

◆ la_dlar1v()

la_lapack::lar1v::la_dlar1v

◆ la_qlar1v()

la_lapack::lar1v::la_qlar1v

◆ la_slar1v()

la_lapack::lar1v::la_slar1v

◆ la_wlar1v()

la_lapack::lar1v::la_wlar1v

◆ la_zlar1v()

la_lapack::lar1v::la_zlar1v

◆ slar1v()

pure subroutine la_lapack::lar1v::slar1v ( integer(ilp), intent(in)  n,
integer(ilp), intent(in)  b1,
integer(ilp), intent(in)  bn,
real(sp), intent(in)  lambda,
real(sp), dimension(*), intent(in)  d,
real(sp), dimension(*), intent(in)  l,
real(sp), dimension(*), intent(in)  ld,
real(sp), dimension(*), intent(in)  lld,
real(sp), intent(in)  pivmin,
real(sp), intent(in)  gaptol,
real(sp), dimension(*), intent(inout)  z,
logical(lk), intent(in)  wantnc,
integer(ilp), intent(out)  negcnt,
real(sp), intent(out)  ztz,
real(sp), intent(out)  mingma,
integer(ilp), intent(inout)  r,
integer(ilp), dimension(*), intent(out)  isuppz,
real(sp), intent(out)  nrminv,
real(sp), intent(out)  resid,
real(sp), intent(out)  rqcorr,
real(sp), dimension(*), intent(out)  work 
)

◆ zlar1v()

pure subroutine la_lapack::lar1v::zlar1v ( integer(ilp), intent(in)  n,
integer(ilp), intent(in)  b1,
integer(ilp), intent(in)  bn,
real(dp), intent(in)  lambda,
real(dp), dimension(*), intent(in)  d,
real(dp), dimension(*), intent(in)  l,
real(dp), dimension(*), intent(in)  ld,
real(dp), dimension(*), intent(in)  lld,
real(dp), intent(in)  pivmin,
real(dp), intent(in)  gaptol,
complex(dp), dimension(*), intent(inout)  z,
logical(lk), intent(in)  wantnc,
integer(ilp), intent(out)  negcnt,
real(dp), intent(out)  ztz,
real(dp), intent(out)  mingma,
integer(ilp), intent(inout)  r,
integer(ilp), dimension(*), intent(out)  isuppz,
real(dp), intent(out)  nrminv,
real(dp), intent(out)  resid,
real(dp), intent(out)  rqcorr,
real(dp), dimension(*), intent(out)  work 
)

The documentation for this interface was generated from the following file: