This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one.
More...
|
pure subroutine | dlasd5 (i, d, z, delta, rho, dsigma, work) |
|
| la_dlasd5 |
|
| la_qlasd5 |
|
pure subroutine | slasd5 (i, d, z, delta, rho, dsigma, work) |
|
| la_slasd5 |
|
This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one.
◆ dlasd5()
pure subroutine la_lapack::lasd5::dlasd5 |
( |
integer(ilp), intent(in) |
i, |
|
|
real(dp), dimension(2), intent(in) |
d, |
|
|
real(dp), dimension(2), intent(in) |
z, |
|
|
real(dp), dimension(2), intent(out) |
delta, |
|
|
real(dp), intent(in) |
rho, |
|
|
real(dp), intent(out) |
dsigma, |
|
|
real(dp), dimension(2), intent(out) |
work |
|
) |
| |
◆ la_dlasd5()
la_lapack::lasd5::la_dlasd5 |
◆ la_qlasd5()
la_lapack::lasd5::la_qlasd5 |
◆ la_slasd5()
la_lapack::lasd5::la_slasd5 |
◆ slasd5()
pure subroutine la_lapack::lasd5::slasd5 |
( |
integer(ilp), intent(in) |
i, |
|
|
real(sp), dimension(2), intent(in) |
d, |
|
|
real(sp), dimension(2), intent(in) |
z, |
|
|
real(sp), dimension(2), intent(out) |
delta, |
|
|
real(sp), intent(in) |
rho, |
|
|
real(sp), intent(out) |
dsigma, |
|
|
real(sp), dimension(2), intent(out) |
work |
|
) |
| |
The documentation for this interface was generated from the following file: