TGEVC: computes some or all of the right and/or left eigenvectors of a pair of complex matrices (S,P), where S and P are upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a complex matrix pair (A,B): A = Q*S*Z**H, B = Q*P*Z**H as computed by CGGHRD + CHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate tranpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal elements of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the unitary factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B).
More...
|
pure subroutine | ctgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, rwork, info) |
|
| la_ctgevc |
|
pure subroutine | dtgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, info) |
|
| la_dtgevc |
|
| la_qtgevc |
|
pure subroutine | stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, info) |
|
| la_stgevc |
|
| la_wtgevc |
|
pure subroutine | ztgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, rwork, info) |
|
| la_ztgevc |
|
TGEVC: computes some or all of the right and/or left eigenvectors of a pair of complex matrices (S,P), where S and P are upper triangular. Matrix pairs of this type are produced by the generalized Schur factorization of a complex matrix pair (A,B): A = Q*S*Z**H, B = Q*P*Z**H as computed by CGGHRD + CHGEQZ. The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are defined by: S*x = w*P*x, (y**H)*S = w*(y**H)*P, where y**H denotes the conjugate tranpose of y. The eigenvalues are not input to this routine, but are computed directly from the diagonal elements of S and P. This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products Z*X and/or Q*Y, where Z and Q are input matrices. If Q and Z are the unitary factors from the generalized Schur factorization of a matrix pair (A,B), then Z*X and Q*Y are the matrices of right and left eigenvectors of (A,B).
◆ ctgevc()
pure subroutine la_lapack::tgevc::ctgevc |
( |
character, intent(in) |
side, |
|
|
character, intent(in) |
howmny, |
|
|
logical(lk), dimension(*), intent(in) |
select, |
|
|
integer(ilp), intent(in) |
n, |
|
|
complex(sp), dimension(lds,*), intent(in) |
s, |
|
|
integer(ilp), intent(in) |
lds, |
|
|
complex(sp), dimension(ldp,*), intent(in) |
p, |
|
|
integer(ilp), intent(in) |
ldp, |
|
|
complex(sp), dimension(ldvl,*), intent(inout) |
vl, |
|
|
integer(ilp), intent(in) |
ldvl, |
|
|
complex(sp), dimension(ldvr,*), intent(inout) |
vr, |
|
|
integer(ilp), intent(in) |
ldvr, |
|
|
integer(ilp), intent(in) |
mm, |
|
|
integer(ilp), intent(out) |
m, |
|
|
complex(sp), dimension(*), intent(out) |
work, |
|
|
real(sp), dimension(*), intent(out) |
rwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ dtgevc()
pure subroutine la_lapack::tgevc::dtgevc |
( |
character, intent(in) |
side, |
|
|
character, intent(in) |
howmny, |
|
|
logical(lk), dimension(*), intent(in) |
select, |
|
|
integer(ilp), intent(in) |
n, |
|
|
real(dp), dimension(lds,*), intent(in) |
s, |
|
|
integer(ilp), intent(in) |
lds, |
|
|
real(dp), dimension(ldp,*), intent(in) |
p, |
|
|
integer(ilp), intent(in) |
ldp, |
|
|
real(dp), dimension(ldvl,*), intent(inout) |
vl, |
|
|
integer(ilp), intent(in) |
ldvl, |
|
|
real(dp), dimension(ldvr,*), intent(inout) |
vr, |
|
|
integer(ilp), intent(in) |
ldvr, |
|
|
integer(ilp), intent(in) |
mm, |
|
|
integer(ilp), intent(out) |
m, |
|
|
real(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ la_ctgevc()
la_lapack::tgevc::la_ctgevc |
◆ la_dtgevc()
la_lapack::tgevc::la_dtgevc |
◆ la_qtgevc()
la_lapack::tgevc::la_qtgevc |
◆ la_stgevc()
la_lapack::tgevc::la_stgevc |
◆ la_wtgevc()
la_lapack::tgevc::la_wtgevc |
◆ la_ztgevc()
la_lapack::tgevc::la_ztgevc |
◆ stgevc()
pure subroutine la_lapack::tgevc::stgevc |
( |
character, intent(in) |
side, |
|
|
character, intent(in) |
howmny, |
|
|
logical(lk), dimension(*), intent(in) |
select, |
|
|
integer(ilp), intent(in) |
n, |
|
|
real(sp), dimension(lds,*), intent(in) |
s, |
|
|
integer(ilp), intent(in) |
lds, |
|
|
real(sp), dimension(ldp,*), intent(in) |
p, |
|
|
integer(ilp), intent(in) |
ldp, |
|
|
real(sp), dimension(ldvl,*), intent(inout) |
vl, |
|
|
integer(ilp), intent(in) |
ldvl, |
|
|
real(sp), dimension(ldvr,*), intent(inout) |
vr, |
|
|
integer(ilp), intent(in) |
ldvr, |
|
|
integer(ilp), intent(in) |
mm, |
|
|
integer(ilp), intent(out) |
m, |
|
|
real(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ ztgevc()
pure subroutine la_lapack::tgevc::ztgevc |
( |
character, intent(in) |
side, |
|
|
character, intent(in) |
howmny, |
|
|
logical(lk), dimension(*), intent(in) |
select, |
|
|
integer(ilp), intent(in) |
n, |
|
|
complex(dp), dimension(lds,*), intent(in) |
s, |
|
|
integer(ilp), intent(in) |
lds, |
|
|
complex(dp), dimension(ldp,*), intent(in) |
p, |
|
|
integer(ilp), intent(in) |
ldp, |
|
|
complex(dp), dimension(ldvl,*), intent(inout) |
vl, |
|
|
integer(ilp), intent(in) |
ldvl, |
|
|
complex(dp), dimension(ldvr,*), intent(inout) |
vr, |
|
|
integer(ilp), intent(in) |
ldvr, |
|
|
integer(ilp), intent(in) |
mm, |
|
|
integer(ilp), intent(out) |
m, |
|
|
complex(dp), dimension(*), intent(out) |
work, |
|
|
real(dp), dimension(*), intent(out) |
rwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
The documentation for this interface was generated from the following file: