fortran-lapack
Loading...
Searching...
No Matches
la_lapack::gges Interface Reference

GGES: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR). This gives the generalized Schur factorization (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) where (VSR)**H is the conjugate-transpose of VSR. Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper triangular matrix S and the upper triangular matrix T. The leading columns of VSL and VSR then form an unitary basis for the corresponding left and right eigenspaces (deflating subspaces). (If only the generalized eigenvalues are needed, use the driver CGGEV instead, which is faster.) A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and, in addition, the diagonal elements of T are non-negative real numbers. More...

Public Member Functions

subroutine cgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
 
 la_cgges
 
subroutine dgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
 
 la_dgges
 
 la_qgges
 
subroutine sgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
 
 la_sgges
 
 la_wgges
 
subroutine zgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
 
 la_zgges
 

Detailed Description

GGES: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR). This gives the generalized Schur factorization (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) where (VSR)**H is the conjugate-transpose of VSR. Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper triangular matrix S and the upper triangular matrix T. The leading columns of VSL and VSR then form an unitary basis for the corresponding left and right eigenspaces (deflating subspaces). (If only the generalized eigenvalues are needed, use the driver CGGEV instead, which is faster.) A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and, in addition, the diagonal elements of T are non-negative real numbers.

Member Function/Subroutine Documentation

◆ cgges()

subroutine la_lapack::gges::cgges ( character, intent(in)  jobvsl,
character, intent(in)  jobvsr,
character, intent(in)  sort,
procedure(la_selctg_c)  selctg,
integer(ilp), intent(in)  n,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), intent(out)  sdim,
complex(sp), dimension(*), intent(out)  alpha,
complex(sp), dimension(*), intent(out)  beta,
complex(sp), dimension(ldvsl,*), intent(out)  vsl,
integer(ilp), intent(in)  ldvsl,
complex(sp), dimension(ldvsr,*), intent(out)  vsr,
integer(ilp), intent(in)  ldvsr,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(sp), dimension(*), intent(out)  rwork,
logical(lk), dimension(*), intent(out)  bwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ dgges()

subroutine la_lapack::gges::dgges ( character, intent(in)  jobvsl,
character, intent(in)  jobvsr,
character, intent(in)  sort,
procedure(la_selctg_d)  selctg,
integer(ilp), intent(in)  n,
real(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), intent(out)  sdim,
real(dp), dimension(*), intent(out)  alphar,
real(dp), dimension(*), intent(out)  alphai,
real(dp), dimension(*), intent(out)  beta,
real(dp), dimension(ldvsl,*), intent(out)  vsl,
integer(ilp), intent(in)  ldvsl,
real(dp), dimension(ldvsr,*), intent(out)  vsr,
integer(ilp), intent(in)  ldvsr,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
logical(lk), dimension(*), intent(out)  bwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_cgges()

la_lapack::gges::la_cgges

◆ la_dgges()

la_lapack::gges::la_dgges

◆ la_qgges()

la_lapack::gges::la_qgges

◆ la_sgges()

la_lapack::gges::la_sgges

◆ la_wgges()

la_lapack::gges::la_wgges

◆ la_zgges()

la_lapack::gges::la_zgges

◆ sgges()

subroutine la_lapack::gges::sgges ( character, intent(in)  jobvsl,
character, intent(in)  jobvsr,
character, intent(in)  sort,
procedure(la_selctg_s)  selctg,
integer(ilp), intent(in)  n,
real(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
real(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), intent(out)  sdim,
real(sp), dimension(*), intent(out)  alphar,
real(sp), dimension(*), intent(out)  alphai,
real(sp), dimension(*), intent(out)  beta,
real(sp), dimension(ldvsl,*), intent(out)  vsl,
integer(ilp), intent(in)  ldvsl,
real(sp), dimension(ldvsr,*), intent(out)  vsr,
integer(ilp), intent(in)  ldvsr,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
logical(lk), dimension(*), intent(out)  bwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ zgges()

subroutine la_lapack::gges::zgges ( character, intent(in)  jobvsl,
character, intent(in)  jobvsr,
character, intent(in)  sort,
procedure(la_selctg_z)  selctg,
integer(ilp), intent(in)  n,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
integer(ilp), intent(out)  sdim,
complex(dp), dimension(*), intent(out)  alpha,
complex(dp), dimension(*), intent(out)  beta,
complex(dp), dimension(ldvsl,*), intent(out)  vsl,
integer(ilp), intent(in)  ldvsl,
complex(dp), dimension(ldvsr,*), intent(out)  vsr,
integer(ilp), intent(in)  ldvsr,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(dp), dimension(*), intent(out)  rwork,
logical(lk), dimension(*), intent(out)  bwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: