LARTGS: generates a plane rotation designed to introduce a bulge in Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD problem. X and Y are the top-row entries, and SIGMA is the shift. The computed CS and SN define a plane rotation satisfying [ CS SN ] . [ X^2 - SIGMA ] = [ R ], [ -SN CS ] [ X * Y ] [ 0 ] with R nonnegative. If X^2 - SIGMA and X * Y are 0, then the rotation is by PI/2.
More...
LARTGS: generates a plane rotation designed to introduce a bulge in Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD problem. X and Y are the top-row entries, and SIGMA is the shift. The computed CS and SN define a plane rotation satisfying [ CS SN ] . [ X^2 - SIGMA ] = [ R ], [ -SN CS ] [ X * Y ] [ 0 ] with R nonnegative. If X^2 - SIGMA and X * Y are 0, then the rotation is by PI/2.
◆ dlartgs()
pure subroutine la_lapack::lartgs::dlartgs |
( |
real(dp), intent(in) |
x, |
|
|
real(dp), intent(in) |
y, |
|
|
real(dp), intent(in) |
sigma, |
|
|
real(dp), intent(out) |
cs, |
|
|
real(dp), intent(out) |
sn |
|
) |
| |
◆ la_dlartgs()
la_lapack::lartgs::la_dlartgs |
◆ la_qlartgs()
la_lapack::lartgs::la_qlartgs |
◆ la_slartgs()
la_lapack::lartgs::la_slartgs |
◆ slartgs()
pure subroutine la_lapack::lartgs::slartgs |
( |
real(sp), intent(in) |
x, |
|
|
real(sp), intent(in) |
y, |
|
|
real(sp), intent(in) |
sigma, |
|
|
real(sp), intent(out) |
cs, |
|
|
real(sp), intent(out) |
sn |
|
) |
| |
The documentation for this interface was generated from the following file: