LASWLQ: computes a blocked Tall-Skinny LQ factorization of a complex M-by-N matrix A for M <= N: A = ( L 0 ) * Q, where: Q is a n-by-N orthogonal matrix, stored on exit in an implicit form in the elements above the diagonal of the array A and in the elements of the array T; L is a lower-triangular M-by-M matrix stored on exit in the elements on and below the diagonal of the array A. 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
More...
|
pure subroutine | claswlq (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_claswlq |
|
pure subroutine | dlaswlq (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_dlaswlq |
|
| la_qlaswlq |
|
pure subroutine | slaswlq (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_slaswlq |
|
| la_wlaswlq |
|
pure subroutine | zlaswlq (m, n, mb, nb, a, lda, t, ldt, work, lwork, info) |
|
| la_zlaswlq |
|
LASWLQ: computes a blocked Tall-Skinny LQ factorization of a complex M-by-N matrix A for M <= N: A = ( L 0 ) * Q, where: Q is a n-by-N orthogonal matrix, stored on exit in an implicit form in the elements above the diagonal of the array A and in the elements of the array T; L is a lower-triangular M-by-M matrix stored on exit in the elements on and below the diagonal of the array A. 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
◆ claswlq()
pure subroutine la_lapack::laswlq::claswlq |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
complex(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(sp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
complex(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ dlaswlq()
pure subroutine la_lapack::laswlq::dlaswlq |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
real(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(dp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
real(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ la_claswlq()
la_lapack::laswlq::la_claswlq |
◆ la_dlaswlq()
la_lapack::laswlq::la_dlaswlq |
◆ la_qlaswlq()
la_lapack::laswlq::la_qlaswlq |
◆ la_slaswlq()
la_lapack::laswlq::la_slaswlq |
◆ la_wlaswlq()
la_lapack::laswlq::la_wlaswlq |
◆ la_zlaswlq()
la_lapack::laswlq::la_zlaswlq |
◆ slaswlq()
pure subroutine la_lapack::laswlq::slaswlq |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
real(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(sp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
real(sp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ zlaswlq()
pure subroutine la_lapack::laswlq::zlaswlq |
( |
integer(ilp), intent(in) |
m, |
|
|
integer(ilp), intent(in) |
n, |
|
|
integer(ilp), intent(in) |
mb, |
|
|
integer(ilp), intent(in) |
nb, |
|
|
complex(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
complex(dp), dimension(ldt,*), intent(out) |
t, |
|
|
integer(ilp), intent(in) |
ldt, |
|
|
complex(dp), dimension(*), intent(out) |
work, |
|
|
integer(ilp), intent(in) |
lwork, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
The documentation for this interface was generated from the following file: