fortran-lapack
Loading...
Searching...
No Matches
la_lapack::hetf2_rook Interface Reference

HETF2_ROOK: computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: A = U*D*U**H or A = L*D*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U**H is the conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the unblocked version of the algorithm, calling Level 2 BLAS. More...

Public Member Functions

pure subroutine chetf2_rook (uplo, n, a, lda, ipiv, info)
 
 la_chetf2_rook
 
 la_whetf2_rook
 
pure subroutine zhetf2_rook (uplo, n, a, lda, ipiv, info)
 
 la_zhetf2_rook
 

Detailed Description

HETF2_ROOK: computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: A = U*D*U**H or A = L*D*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U**H is the conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the unblocked version of the algorithm, calling Level 2 BLAS.

Member Function/Subroutine Documentation

◆ chetf2_rook()

pure subroutine la_lapack::hetf2_rook::chetf2_rook ( character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
integer(ilp), dimension(*), intent(out)  ipiv,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_chetf2_rook()

la_lapack::hetf2_rook::la_chetf2_rook

◆ la_whetf2_rook()

la_lapack::hetf2_rook::la_whetf2_rook

◆ la_zhetf2_rook()

la_lapack::hetf2_rook::la_zhetf2_rook

◆ zhetf2_rook()

pure subroutine la_lapack::hetf2_rook::zhetf2_rook ( character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
integer(ilp), dimension(*), intent(out)  ipiv,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: