LABRD: reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower real bidiagonal form by a unitary transformation Q**H * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by CGEBRD.
More...
|
pure subroutine | clabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy) |
|
| la_clabrd |
|
pure subroutine | dlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy) |
|
| la_dlabrd |
|
| la_qlabrd |
|
pure subroutine | slabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy) |
|
| la_slabrd |
|
| la_wlabrd |
|
pure subroutine | zlabrd (m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy) |
|
| la_zlabrd |
|
LABRD: reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower real bidiagonal form by a unitary transformation Q**H * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by CGEBRD.
◆ clabrd()
pure subroutine la_lapack::labrd::clabrd |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | nb, |
|
|
complex(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(sp), dimension(*), intent(out) | d, |
|
|
real(sp), dimension(*), intent(out) | e, |
|
|
complex(sp), dimension(*), intent(out) | tauq, |
|
|
complex(sp), dimension(*), intent(out) | taup, |
|
|
complex(sp), dimension(ldx,*), intent(out) | x, |
|
|
integer(ilp), intent(in) | ldx, |
|
|
complex(sp), dimension(ldy,*), intent(out) | y, |
|
|
integer(ilp), intent(in) | ldy ) |
◆ dlabrd()
pure subroutine la_lapack::labrd::dlabrd |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | nb, |
|
|
real(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(dp), dimension(*), intent(out) | d, |
|
|
real(dp), dimension(*), intent(out) | e, |
|
|
real(dp), dimension(*), intent(out) | tauq, |
|
|
real(dp), dimension(*), intent(out) | taup, |
|
|
real(dp), dimension(ldx,*), intent(out) | x, |
|
|
integer(ilp), intent(in) | ldx, |
|
|
real(dp), dimension(ldy,*), intent(out) | y, |
|
|
integer(ilp), intent(in) | ldy ) |
◆ la_clabrd()
la_lapack::labrd::la_clabrd |
◆ la_dlabrd()
la_lapack::labrd::la_dlabrd |
◆ la_qlabrd()
la_lapack::labrd::la_qlabrd |
◆ la_slabrd()
la_lapack::labrd::la_slabrd |
◆ la_wlabrd()
la_lapack::labrd::la_wlabrd |
◆ la_zlabrd()
la_lapack::labrd::la_zlabrd |
◆ slabrd()
pure subroutine la_lapack::labrd::slabrd |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | nb, |
|
|
real(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(sp), dimension(*), intent(out) | d, |
|
|
real(sp), dimension(*), intent(out) | e, |
|
|
real(sp), dimension(*), intent(out) | tauq, |
|
|
real(sp), dimension(*), intent(out) | taup, |
|
|
real(sp), dimension(ldx,*), intent(out) | x, |
|
|
integer(ilp), intent(in) | ldx, |
|
|
real(sp), dimension(ldy,*), intent(out) | y, |
|
|
integer(ilp), intent(in) | ldy ) |
◆ zlabrd()
pure subroutine la_lapack::labrd::zlabrd |
( |
integer(ilp), intent(in) | m, |
|
|
integer(ilp), intent(in) | n, |
|
|
integer(ilp), intent(in) | nb, |
|
|
complex(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(dp), dimension(*), intent(out) | d, |
|
|
real(dp), dimension(*), intent(out) | e, |
|
|
complex(dp), dimension(*), intent(out) | tauq, |
|
|
complex(dp), dimension(*), intent(out) | taup, |
|
|
complex(dp), dimension(ldx,*), intent(out) | x, |
|
|
integer(ilp), intent(in) | ldx, |
|
|
complex(dp), dimension(ldy,*), intent(out) | y, |
|
|
integer(ilp), intent(in) | ldy ) |
The documentation for this interface was generated from the following file: