fortran-lapack
Loading...
Searching...
No Matches
la_lapack::lasr Interface Reference

LASR: applies a sequence of real plane rotations to a complex matrix A, from either the left or the right. When SIDE = 'L', the transformation takes the form A := P*A and when SIDE = 'R', the transformation takes the form A := A*P**T where P is an orthogonal matrix consisting of a sequence of z plane rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', and P**T is the transpose of P. When DIRECT = 'F' (Forward sequence), then P = P(z-1) * ... * P(2) * P(1) and when DIRECT = 'B' (Backward sequence), then P = P(1) * P(2) * ... * P(z-1) where P(k) is a plane rotation matrix defined by the 2-by-2 rotation R(k) = ( c(k) s(k) ) = ( -s(k) c(k) ). When PIVOT = 'V' (Variable pivot), the rotation is performed for the plane (k,k+1), i.e., P(k) has the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and k+1. When PIVOT = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k) has the form P(k) = ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears in rows and columns 1 and k+1. Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is performed for the plane (k,z), giving P(k) the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) where R(k) appears in rows and columns k and z. The rotations are performed without ever forming P(k) explicitly. More...

Public Member Functions

pure subroutine clasr (side, pivot, direct, m, n, c, s, a, lda)
 
 la_clasr
 
pure subroutine dlasr (side, pivot, direct, m, n, c, s, a, lda)
 
 la_dlasr
 
 la_qlasr
 
pure subroutine slasr (side, pivot, direct, m, n, c, s, a, lda)
 
 la_slasr
 
 la_wlasr
 
pure subroutine zlasr (side, pivot, direct, m, n, c, s, a, lda)
 
 la_zlasr
 

Detailed Description

LASR: applies a sequence of real plane rotations to a complex matrix A, from either the left or the right. When SIDE = 'L', the transformation takes the form A := P*A and when SIDE = 'R', the transformation takes the form A := A*P**T where P is an orthogonal matrix consisting of a sequence of z plane rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', and P**T is the transpose of P. When DIRECT = 'F' (Forward sequence), then P = P(z-1) * ... * P(2) * P(1) and when DIRECT = 'B' (Backward sequence), then P = P(1) * P(2) * ... * P(z-1) where P(k) is a plane rotation matrix defined by the 2-by-2 rotation R(k) = ( c(k) s(k) ) = ( -s(k) c(k) ). When PIVOT = 'V' (Variable pivot), the rotation is performed for the plane (k,k+1), i.e., P(k) has the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and k+1. When PIVOT = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k) has the form P(k) = ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears in rows and columns 1 and k+1. Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is performed for the plane (k,z), giving P(k) the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) where R(k) appears in rows and columns k and z. The rotations are performed without ever forming P(k) explicitly.

Member Function/Subroutine Documentation

◆ clasr()

pure subroutine la_lapack::lasr::clasr ( character, intent(in)  side,
character, intent(in)  pivot,
character, intent(in)  direct,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(sp), dimension(*), intent(in)  c,
real(sp), dimension(*), intent(in)  s,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda 
)

◆ dlasr()

pure subroutine la_lapack::lasr::dlasr ( character, intent(in)  side,
character, intent(in)  pivot,
character, intent(in)  direct,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(dp), dimension(*), intent(in)  c,
real(dp), dimension(*), intent(in)  s,
real(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda 
)

◆ la_clasr()

la_lapack::lasr::la_clasr

◆ la_dlasr()

la_lapack::lasr::la_dlasr

◆ la_qlasr()

la_lapack::lasr::la_qlasr

◆ la_slasr()

la_lapack::lasr::la_slasr

◆ la_wlasr()

la_lapack::lasr::la_wlasr

◆ la_zlasr()

la_lapack::lasr::la_zlasr

◆ slasr()

pure subroutine la_lapack::lasr::slasr ( character, intent(in)  side,
character, intent(in)  pivot,
character, intent(in)  direct,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(sp), dimension(*), intent(in)  c,
real(sp), dimension(*), intent(in)  s,
real(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda 
)

◆ zlasr()

pure subroutine la_lapack::lasr::zlasr ( character, intent(in)  side,
character, intent(in)  pivot,
character, intent(in)  direct,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
real(dp), dimension(*), intent(in)  c,
real(dp), dimension(*), intent(in)  s,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda 
)

The documentation for this interface was generated from the following file: