fortran-lapack
Loading...
Searching...
No Matches
la_lapack::hegvd Interface Reference

HEGVD: computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. More...

Public Member Functions

subroutine chegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork, iwork, liwork, info)
 
 la_chegvd
 
 la_whegvd
 
subroutine zhegvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork, iwork, liwork, info)
 
 la_zhegvd
 

Detailed Description

HEGVD: computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

Member Function/Subroutine Documentation

◆ chegvd()

subroutine la_lapack::hegvd::chegvd ( integer(ilp), intent(in)  itype,
character, intent(in)  jobz,
character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(sp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
real(sp), dimension(*), intent(out)  w,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(sp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_chegvd()

la_lapack::hegvd::la_chegvd

◆ la_whegvd()

la_lapack::hegvd::la_whegvd

◆ la_zhegvd()

la_lapack::hegvd::la_zhegvd

◆ zhegvd()

subroutine la_lapack::hegvd::zhegvd ( integer(ilp), intent(in)  itype,
character, intent(in)  jobz,
character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
complex(dp), dimension(ldb,*), intent(inout)  b,
integer(ilp), intent(in)  ldb,
real(dp), dimension(*), intent(out)  w,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(dp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: