LAIC1: applies one step of incremental condition estimation in its simplest version: Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j lower triangular matrix L, such that twonorm(L*x) = sest Then LAIC1 computes sestpr, s, c such that the vector [ s*x ] xhat = [ c ] is an approximate singular vector of [ L 0 ] Lhat = [ w**H gamma ] in the sense that twonorm(Lhat*xhat) = sestpr. Depending on JOB, an estimate for the largest or smallest singular value is computed. Note that [s c]**H and sestpr**2 is an eigenpair of the system diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] [ conjg(gamma) ] where alpha = x**H*w.
More...
|
pure subroutine | claic1 (job, j, x, sest, w, gamma, sestpr, s, c) |
|
| la_claic1 |
|
pure subroutine | dlaic1 (job, j, x, sest, w, gamma, sestpr, s, c) |
|
| la_dlaic1 |
|
| la_qlaic1 |
|
pure subroutine | slaic1 (job, j, x, sest, w, gamma, sestpr, s, c) |
|
| la_slaic1 |
|
| la_wlaic1 |
|
pure subroutine | zlaic1 (job, j, x, sest, w, gamma, sestpr, s, c) |
|
| la_zlaic1 |
|
LAIC1: applies one step of incremental condition estimation in its simplest version: Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j lower triangular matrix L, such that twonorm(L*x) = sest Then LAIC1 computes sestpr, s, c such that the vector [ s*x ] xhat = [ c ] is an approximate singular vector of [ L 0 ] Lhat = [ w**H gamma ] in the sense that twonorm(Lhat*xhat) = sestpr. Depending on JOB, an estimate for the largest or smallest singular value is computed. Note that [s c]**H and sestpr**2 is an eigenpair of the system diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] [ conjg(gamma) ] where alpha = x**H*w.
◆ claic1()
pure subroutine la_lapack::laic1::claic1 |
( |
integer(ilp), intent(in) |
job, |
|
|
integer(ilp), intent(in) |
j, |
|
|
complex(sp), dimension(j), intent(in) |
x, |
|
|
real(sp), intent(in) |
sest, |
|
|
complex(sp), dimension(j), intent(in) |
w, |
|
|
complex(sp), intent(in) |
gamma, |
|
|
real(sp), intent(out) |
sestpr, |
|
|
complex(sp), intent(out) |
s, |
|
|
complex(sp), intent(out) |
c |
|
) |
| |
◆ dlaic1()
pure subroutine la_lapack::laic1::dlaic1 |
( |
integer(ilp), intent(in) |
job, |
|
|
integer(ilp), intent(in) |
j, |
|
|
real(dp), dimension(j), intent(in) |
x, |
|
|
real(dp), intent(in) |
sest, |
|
|
real(dp), dimension(j), intent(in) |
w, |
|
|
real(dp), intent(in) |
gamma, |
|
|
real(dp), intent(out) |
sestpr, |
|
|
real(dp), intent(out) |
s, |
|
|
real(dp), intent(out) |
c |
|
) |
| |
◆ la_claic1()
la_lapack::laic1::la_claic1 |
◆ la_dlaic1()
la_lapack::laic1::la_dlaic1 |
◆ la_qlaic1()
la_lapack::laic1::la_qlaic1 |
◆ la_slaic1()
la_lapack::laic1::la_slaic1 |
◆ la_wlaic1()
la_lapack::laic1::la_wlaic1 |
◆ la_zlaic1()
la_lapack::laic1::la_zlaic1 |
◆ slaic1()
pure subroutine la_lapack::laic1::slaic1 |
( |
integer(ilp), intent(in) |
job, |
|
|
integer(ilp), intent(in) |
j, |
|
|
real(sp), dimension(j), intent(in) |
x, |
|
|
real(sp), intent(in) |
sest, |
|
|
real(sp), dimension(j), intent(in) |
w, |
|
|
real(sp), intent(in) |
gamma, |
|
|
real(sp), intent(out) |
sestpr, |
|
|
real(sp), intent(out) |
s, |
|
|
real(sp), intent(out) |
c |
|
) |
| |
◆ zlaic1()
pure subroutine la_lapack::laic1::zlaic1 |
( |
integer(ilp), intent(in) |
job, |
|
|
integer(ilp), intent(in) |
j, |
|
|
complex(dp), dimension(j), intent(in) |
x, |
|
|
real(dp), intent(in) |
sest, |
|
|
complex(dp), dimension(j), intent(in) |
w, |
|
|
complex(dp), intent(in) |
gamma, |
|
|
real(dp), intent(out) |
sestpr, |
|
|
complex(dp), intent(out) |
s, |
|
|
complex(dp), intent(out) |
c |
|
) |
| |
The documentation for this interface was generated from the following file: