fortran-lapack
Loading...
Searching...
No Matches
la_lapack::hbgvd Interface Reference

HBGVD: computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. More...

Public Member Functions

pure subroutine chbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
 
 la_chbgvd
 
 la_whbgvd
 
pure subroutine zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
 
 la_zhbgvd
 

Detailed Description

HBGVD: computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

Member Function/Subroutine Documentation

◆ chbgvd()

pure subroutine la_lapack::hbgvd::chbgvd ( character, intent(in)  jobz,
character, intent(in)  uplo,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  ka,
integer(ilp), intent(in)  kb,
complex(sp), dimension(ldab,*), intent(inout)  ab,
integer(ilp), intent(in)  ldab,
complex(sp), dimension(ldbb,*), intent(inout)  bb,
integer(ilp), intent(in)  ldbb,
real(sp), dimension(*), intent(out)  w,
complex(sp), dimension(ldz,*), intent(out)  z,
integer(ilp), intent(in)  ldz,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(sp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_chbgvd()

la_lapack::hbgvd::la_chbgvd

◆ la_whbgvd()

la_lapack::hbgvd::la_whbgvd

◆ la_zhbgvd()

la_lapack::hbgvd::la_zhbgvd

◆ zhbgvd()

pure subroutine la_lapack::hbgvd::zhbgvd ( character, intent(in)  jobz,
character, intent(in)  uplo,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  ka,
integer(ilp), intent(in)  kb,
complex(dp), dimension(ldab,*), intent(inout)  ab,
integer(ilp), intent(in)  ldab,
complex(dp), dimension(ldbb,*), intent(inout)  bb,
integer(ilp), intent(in)  ldbb,
real(dp), dimension(*), intent(out)  w,
complex(dp), dimension(ldz,*), intent(out)  z,
integer(ilp), intent(in)  ldz,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
real(dp), dimension(*), intent(out)  rwork,
integer(ilp), intent(in)  lrwork,
integer(ilp), dimension(*), intent(out)  iwork,
integer(ilp), intent(in)  liwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: