fortran-lapack
Loading...
Searching...
No Matches
la_lapack::hetrf_aa Interface Reference

HETRF_AA: computes the factorization of a complex hermitian matrix A using the Aasen's algorithm. The form of the factorization is A = U**H*T*U or A = L*T*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS. More...

Public Member Functions

pure subroutine chetrf_aa (uplo, n, a, lda, ipiv, work, lwork, info)
 
 la_chetrf_aa
 
 la_whetrf_aa
 
pure subroutine zhetrf_aa (uplo, n, a, lda, ipiv, work, lwork, info)
 
 la_zhetrf_aa
 

Detailed Description

HETRF_AA: computes the factorization of a complex hermitian matrix A using the Aasen's algorithm. The form of the factorization is A = U**H*T*U or A = L*T*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

Member Function/Subroutine Documentation

◆ chetrf_aa()

pure subroutine la_lapack::hetrf_aa::chetrf_aa ( character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(sp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
integer(ilp), dimension(*), intent(out)  ipiv,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_chetrf_aa()

la_lapack::hetrf_aa::la_chetrf_aa

◆ la_whetrf_aa()

la_lapack::hetrf_aa::la_whetrf_aa

◆ la_zhetrf_aa()

la_lapack::hetrf_aa::la_zhetrf_aa

◆ zhetrf_aa()

pure subroutine la_lapack::hetrf_aa::zhetrf_aa ( character, intent(in)  uplo,
integer(ilp), intent(in)  n,
complex(dp), dimension(lda,*), intent(inout)  a,
integer(ilp), intent(in)  lda,
integer(ilp), dimension(*), intent(out)  ipiv,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(in)  lwork,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: