LARTGP: generates a plane rotation so that [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. [ -SN CS ] [ G ] [ 0 ] This is a slower, more accurate version of the Level 1 BLAS routine DROTG, with the following other differences: F and G are unchanged on return. If G=0, then CS=(+/-)1 and SN=0. If F=0 and (G .ne. 0), then CS=0 and SN=(+/-)1. The sign is chosen so that R >= 0.
More...
LARTGP: generates a plane rotation so that [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. [ -SN CS ] [ G ] [ 0 ] This is a slower, more accurate version of the Level 1 BLAS routine DROTG, with the following other differences: F and G are unchanged on return. If G=0, then CS=(+/-)1 and SN=0. If F=0 and (G .ne. 0), then CS=0 and SN=(+/-)1. The sign is chosen so that R >= 0.
◆ dlartgp()
pure subroutine la_lapack::lartgp::dlartgp |
( |
real(dp), intent(in) |
f, |
|
|
real(dp), intent(in) |
g, |
|
|
real(dp), intent(out) |
cs, |
|
|
real(dp), intent(out) |
sn, |
|
|
real(dp), intent(out) |
r |
|
) |
| |
◆ la_dlartgp()
la_lapack::lartgp::la_dlartgp |
◆ la_qlartgp()
la_lapack::lartgp::la_qlartgp |
◆ la_slartgp()
la_lapack::lartgp::la_slartgp |
◆ slartgp()
pure subroutine la_lapack::lartgp::slartgp |
( |
real(sp), intent(in) |
f, |
|
|
real(sp), intent(in) |
g, |
|
|
real(sp), intent(out) |
cs, |
|
|
real(sp), intent(out) |
sn, |
|
|
real(sp), intent(out) |
r |
|
) |
| |
The documentation for this interface was generated from the following file: