Loading [MathJax]/extensions/tex2jax.js
fortran-lapack
All Classes Namespaces Files Functions Variables Pages
la_lapack::ggev Interface Reference

GGEV: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j). More...

Public Member Functions

subroutine cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
 
 la_cggev
 
subroutine dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
 
 la_dggev
 
 la_qggev
 
subroutine sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
 
 la_sggev
 
 la_wggev
 
subroutine zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
 
 la_zggev
 

Detailed Description

GGEV: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j).

Member Function/Subroutine Documentation

◆ cggev()

subroutine la_lapack::ggev::cggev ( character, intent(in) jobvl,
character, intent(in) jobvr,
integer(ilp), intent(in) n,
complex(sp), dimension(lda,*), intent(inout) a,
integer(ilp), intent(in) lda,
complex(sp), dimension(ldb,*), intent(inout) b,
integer(ilp), intent(in) ldb,
complex(sp), dimension(*), intent(out) alpha,
complex(sp), dimension(*), intent(out) beta,
complex(sp), dimension(ldvl,*), intent(out) vl,
integer(ilp), intent(in) ldvl,
complex(sp), dimension(ldvr,*), intent(out) vr,
integer(ilp), intent(in) ldvr,
complex(sp), dimension(*), intent(out) work,
integer(ilp), intent(in) lwork,
real(sp), dimension(*), intent(out) rwork,
integer(ilp), intent(out) info )
Here is the call graph for this function:

◆ dggev()

subroutine la_lapack::ggev::dggev ( character, intent(in) jobvl,
character, intent(in) jobvr,
integer(ilp), intent(in) n,
real(dp), dimension(lda,*), intent(inout) a,
integer(ilp), intent(in) lda,
real(dp), dimension(ldb,*), intent(inout) b,
integer(ilp), intent(in) ldb,
real(dp), dimension(*), intent(out) alphar,
real(dp), dimension(*), intent(out) alphai,
real(dp), dimension(*), intent(out) beta,
real(dp), dimension(ldvl,*), intent(out) vl,
integer(ilp), intent(in) ldvl,
real(dp), dimension(ldvr,*), intent(out) vr,
integer(ilp), intent(in) ldvr,
real(dp), dimension(*), intent(out) work,
integer(ilp), intent(in) lwork,
integer(ilp), intent(out) info )
Here is the call graph for this function:

◆ la_cggev()

la_lapack::ggev::la_cggev

◆ la_dggev()

la_lapack::ggev::la_dggev

◆ la_qggev()

la_lapack::ggev::la_qggev

◆ la_sggev()

la_lapack::ggev::la_sggev

◆ la_wggev()

la_lapack::ggev::la_wggev

◆ la_zggev()

la_lapack::ggev::la_zggev

◆ sggev()

subroutine la_lapack::ggev::sggev ( character, intent(in) jobvl,
character, intent(in) jobvr,
integer(ilp), intent(in) n,
real(sp), dimension(lda,*), intent(inout) a,
integer(ilp), intent(in) lda,
real(sp), dimension(ldb,*), intent(inout) b,
integer(ilp), intent(in) ldb,
real(sp), dimension(*), intent(out) alphar,
real(sp), dimension(*), intent(out) alphai,
real(sp), dimension(*), intent(out) beta,
real(sp), dimension(ldvl,*), intent(out) vl,
integer(ilp), intent(in) ldvl,
real(sp), dimension(ldvr,*), intent(out) vr,
integer(ilp), intent(in) ldvr,
real(sp), dimension(*), intent(out) work,
integer(ilp), intent(in) lwork,
integer(ilp), intent(out) info )
Here is the call graph for this function:

◆ zggev()

subroutine la_lapack::ggev::zggev ( character, intent(in) jobvl,
character, intent(in) jobvr,
integer(ilp), intent(in) n,
complex(dp), dimension(lda,*), intent(inout) a,
integer(ilp), intent(in) lda,
complex(dp), dimension(ldb,*), intent(inout) b,
integer(ilp), intent(in) ldb,
complex(dp), dimension(*), intent(out) alpha,
complex(dp), dimension(*), intent(out) beta,
complex(dp), dimension(ldvl,*), intent(out) vl,
integer(ilp), intent(in) ldvl,
complex(dp), dimension(ldvr,*), intent(out) vr,
integer(ilp), intent(in) ldvr,
complex(dp), dimension(*), intent(out) work,
integer(ilp), intent(in) lwork,
real(dp), dimension(*), intent(out) rwork,
integer(ilp), intent(out) info )
Here is the call graph for this function:

The documentation for this interface was generated from the following file: