GGEV: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j).
More...
|
subroutine | cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info) |
|
| la_cggev |
|
subroutine | dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info) |
|
| la_dggev |
|
| la_qggev |
|
subroutine | sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info) |
|
| la_sggev |
|
| la_wggev |
|
subroutine | zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork, info) |
|
| la_zggev |
|
GGEV: computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j).
◆ cggev()
subroutine la_lapack::ggev::cggev |
( |
character, intent(in) | jobvl, |
|
|
character, intent(in) | jobvr, |
|
|
integer(ilp), intent(in) | n, |
|
|
complex(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
complex(sp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
complex(sp), dimension(*), intent(out) | alpha, |
|
|
complex(sp), dimension(*), intent(out) | beta, |
|
|
complex(sp), dimension(ldvl,*), intent(out) | vl, |
|
|
integer(ilp), intent(in) | ldvl, |
|
|
complex(sp), dimension(ldvr,*), intent(out) | vr, |
|
|
integer(ilp), intent(in) | ldvr, |
|
|
complex(sp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
real(sp), dimension(*), intent(out) | rwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ dggev()
subroutine la_lapack::ggev::dggev |
( |
character, intent(in) | jobvl, |
|
|
character, intent(in) | jobvr, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(dp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
real(dp), dimension(*), intent(out) | alphar, |
|
|
real(dp), dimension(*), intent(out) | alphai, |
|
|
real(dp), dimension(*), intent(out) | beta, |
|
|
real(dp), dimension(ldvl,*), intent(out) | vl, |
|
|
integer(ilp), intent(in) | ldvl, |
|
|
real(dp), dimension(ldvr,*), intent(out) | vr, |
|
|
integer(ilp), intent(in) | ldvr, |
|
|
real(dp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ la_cggev()
la_lapack::ggev::la_cggev |
◆ la_dggev()
la_lapack::ggev::la_dggev |
◆ la_qggev()
la_lapack::ggev::la_qggev |
◆ la_sggev()
la_lapack::ggev::la_sggev |
◆ la_wggev()
la_lapack::ggev::la_wggev |
◆ la_zggev()
la_lapack::ggev::la_zggev |
◆ sggev()
subroutine la_lapack::ggev::sggev |
( |
character, intent(in) | jobvl, |
|
|
character, intent(in) | jobvr, |
|
|
integer(ilp), intent(in) | n, |
|
|
real(sp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
real(sp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
real(sp), dimension(*), intent(out) | alphar, |
|
|
real(sp), dimension(*), intent(out) | alphai, |
|
|
real(sp), dimension(*), intent(out) | beta, |
|
|
real(sp), dimension(ldvl,*), intent(out) | vl, |
|
|
integer(ilp), intent(in) | ldvl, |
|
|
real(sp), dimension(ldvr,*), intent(out) | vr, |
|
|
integer(ilp), intent(in) | ldvr, |
|
|
real(sp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
integer(ilp), intent(out) | info ) |
◆ zggev()
subroutine la_lapack::ggev::zggev |
( |
character, intent(in) | jobvl, |
|
|
character, intent(in) | jobvr, |
|
|
integer(ilp), intent(in) | n, |
|
|
complex(dp), dimension(lda,*), intent(inout) | a, |
|
|
integer(ilp), intent(in) | lda, |
|
|
complex(dp), dimension(ldb,*), intent(inout) | b, |
|
|
integer(ilp), intent(in) | ldb, |
|
|
complex(dp), dimension(*), intent(out) | alpha, |
|
|
complex(dp), dimension(*), intent(out) | beta, |
|
|
complex(dp), dimension(ldvl,*), intent(out) | vl, |
|
|
integer(ilp), intent(in) | ldvl, |
|
|
complex(dp), dimension(ldvr,*), intent(out) | vr, |
|
|
integer(ilp), intent(in) | ldvr, |
|
|
complex(dp), dimension(*), intent(out) | work, |
|
|
integer(ilp), intent(in) | lwork, |
|
|
real(dp), dimension(*), intent(out) | rwork, |
|
|
integer(ilp), intent(out) | info ) |
The documentation for this interface was generated from the following file: