SYGST: reduces a real symmetric-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
More...
|
pure subroutine | dsygst (itype, uplo, n, a, lda, b, ldb, info) |
|
| la_dsygst |
|
| la_qsygst |
|
pure subroutine | ssygst (itype, uplo, n, a, lda, b, ldb, info) |
|
| la_ssygst |
|
SYGST: reduces a real symmetric-definite generalized eigenproblem to standard form. If ITYPE = 1, the problem is A*x = lambda*B*x, and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
◆ dsygst()
pure subroutine la_lapack::sygst::dsygst |
( |
integer(ilp), intent(in) |
itype, |
|
|
character, intent(in) |
uplo, |
|
|
integer(ilp), intent(in) |
n, |
|
|
real(dp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(dp), dimension(ldb,*), intent(in) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
◆ la_dsygst()
la_lapack::sygst::la_dsygst |
◆ la_qsygst()
la_lapack::sygst::la_qsygst |
◆ la_ssygst()
la_lapack::sygst::la_ssygst |
◆ ssygst()
pure subroutine la_lapack::sygst::ssygst |
( |
integer(ilp), intent(in) |
itype, |
|
|
character, intent(in) |
uplo, |
|
|
integer(ilp), intent(in) |
n, |
|
|
real(sp), dimension(lda,*), intent(inout) |
a, |
|
|
integer(ilp), intent(in) |
lda, |
|
|
real(sp), dimension(ldb,*), intent(in) |
b, |
|
|
integer(ilp), intent(in) |
ldb, |
|
|
integer(ilp), intent(out) |
info |
|
) |
| |
The documentation for this interface was generated from the following file: