fortran-lapack
Loading...
Searching...
No Matches
la_lapack::gemqrt Interface Reference

GEMQRT: overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'C': Q**H C C Q**H where Q is a complex orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**H generated using the compact WY representation as returned by CGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. More...

Public Member Functions

pure subroutine cgemqrt (side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
 
 la_cgemqrt
 
pure subroutine dgemqrt (side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
 
 la_dgemqrt
 
 la_qgemqrt
 
pure subroutine sgemqrt (side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
 
 la_sgemqrt
 
 la_wgemqrt
 
pure subroutine zgemqrt (side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
 
 la_zgemqrt
 

Detailed Description

GEMQRT: overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q C C Q TRANS = 'C': Q**H C C Q**H where Q is a complex orthogonal matrix defined as the product of K elementary reflectors: Q = H(1) H(2) . . . H(K) = I - V T V**H generated using the compact WY representation as returned by CGEQRT. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.

Member Function/Subroutine Documentation

◆ cgemqrt()

pure subroutine la_lapack::gemqrt::cgemqrt ( character, intent(in)  side,
character, intent(in)  trans,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  k,
integer(ilp), intent(in)  nb,
complex(sp), dimension(ldv,*), intent(in)  v,
integer(ilp), intent(in)  ldv,
complex(sp), dimension(ldt,*), intent(in)  t,
integer(ilp), intent(in)  ldt,
complex(sp), dimension(ldc,*), intent(inout)  c,
integer(ilp), intent(in)  ldc,
complex(sp), dimension(*), intent(out)  work,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ dgemqrt()

pure subroutine la_lapack::gemqrt::dgemqrt ( character, intent(in)  side,
character, intent(in)  trans,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  k,
integer(ilp), intent(in)  nb,
real(dp), dimension(ldv,*), intent(in)  v,
integer(ilp), intent(in)  ldv,
real(dp), dimension(ldt,*), intent(in)  t,
integer(ilp), intent(in)  ldt,
real(dp), dimension(ldc,*), intent(inout)  c,
integer(ilp), intent(in)  ldc,
real(dp), dimension(*), intent(out)  work,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ la_cgemqrt()

la_lapack::gemqrt::la_cgemqrt

◆ la_dgemqrt()

la_lapack::gemqrt::la_dgemqrt

◆ la_qgemqrt()

la_lapack::gemqrt::la_qgemqrt

◆ la_sgemqrt()

la_lapack::gemqrt::la_sgemqrt

◆ la_wgemqrt()

la_lapack::gemqrt::la_wgemqrt

◆ la_zgemqrt()

la_lapack::gemqrt::la_zgemqrt

◆ sgemqrt()

pure subroutine la_lapack::gemqrt::sgemqrt ( character, intent(in)  side,
character, intent(in)  trans,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  k,
integer(ilp), intent(in)  nb,
real(sp), dimension(ldv,*), intent(in)  v,
integer(ilp), intent(in)  ldv,
real(sp), dimension(ldt,*), intent(in)  t,
integer(ilp), intent(in)  ldt,
real(sp), dimension(ldc,*), intent(inout)  c,
integer(ilp), intent(in)  ldc,
real(sp), dimension(*), intent(out)  work,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

◆ zgemqrt()

pure subroutine la_lapack::gemqrt::zgemqrt ( character, intent(in)  side,
character, intent(in)  trans,
integer(ilp), intent(in)  m,
integer(ilp), intent(in)  n,
integer(ilp), intent(in)  k,
integer(ilp), intent(in)  nb,
complex(dp), dimension(ldv,*), intent(in)  v,
integer(ilp), intent(in)  ldv,
complex(dp), dimension(ldt,*), intent(in)  t,
integer(ilp), intent(in)  ldt,
complex(dp), dimension(ldc,*), intent(inout)  c,
integer(ilp), intent(in)  ldc,
complex(dp), dimension(*), intent(out)  work,
integer(ilp), intent(out)  info 
)
Here is the call graph for this function:

The documentation for this interface was generated from the following file: